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Abstract - In this paper, the imaging of hydraulic fractures from tilt measurements is investigated with regards
to model selection. The quantitative selection of the most probable model in a finite set of fracture geometry
and loading is carried out using Bayes factors. The modeling error variance is also estimated during the inversion
procedure. Such model selection method allows to retrieve a known limit for the resolution of fracture dimensions
depending on the measurements configuration. Synthetic as well as field examples are presented.

1. INTRODUCTION

Hydraulic fracturing is a technique routinely used in the petroleum industry to enhance the productivity
of wells [5]. It consists of injecting a viscous fluid under high pressure in order to propagate a fracture
from the well into the formation. In the latter stage of a treatment, a mixture of sand is added to the
fracturing fluid. This has the effect of creating a highly permeable channel when the fracture closes back
on itself, thus eventually enhancing oil recovery. The propagation of a hydraulic fracture is a highly non-
linear process due to the coupling between the viscous flow inside the fracture, the elasticity equation,
fracture propagation conditions, and fluid leak-off into the formation. Depending on the configuration
(injection rates, fluid rheology, rock properties etc.), the length and width of the created fracture can
vary by orders of magnitudes. The mapping of such planar fractures (orientation, dimensions) is a critical
issue for reservoir management purposes. Unfortunately, no direct measurement of the created fracture
is currently possible, so the success of a treatment can only be assessed after production has restarted.
In the last few decades different monitoring techniques have been developed to image hydraulic fractures.
The most popular are acoustic emission and tiltmeter monitoring. In this paper, we are interested in the
use of tiltmeter measurements for inferring relevant characteristics of the created fracture.

Tiltmeters measure the quasi-static change of inclination due to the pressurization and propagation
of the hydraulic fracture. In petroleum applications, a typical measurement array would consist of at
most a dozen tiltmeters located either on the earth’s surface or in a monitoring borehole (see Figure 1
for a typical set-up). The goal is to obtain from such elastostatic data the orientation and dimensions of
the created fracture. Unfortunately, due to the elliptic character of quasi-static elasticity, the geometric
signatures of the fracture get “blurred” very quickly as the distance between the measurement location
and the fracture increases (St Venant’s principle). In the far-field, the fracture becomes equivalent to
a Displacement Discontinuity Singularity (i.e. a dislocation dipole), which simplifies the modeling, but
only fracture orientation and volume can be estimated. When measurements are located in the near-field,
the shape of the fracture has an important effect and the choice of the fracture model (geometry, internal
pressure) becomes crucial.

The problem of fracture detection from elasto-static measurement has been investigated mainly in the
context of damage identification [1]. Our problem has important differences. The crack is pressurized and
this pressure is unknown. Also, unlike the case of non destructive testing, we cannot control the loading
on the boundary to better resolve the fracture; we have only one set of data, at very few points inside
the medium, corresponding to the propagation of the fracture. In practice, one has also to remember
that the hydraulic fracture is located in a rock mass that can be rather inhomogeneous and whose elastic
properties are often poorly known. Even when the measurements are known to be located in the near-field
pattern of the fracture, the use of a complete mesh to model the fracture is more or less prohibited by the
unknown orientation of the fracture plane, and the limited measurements available. It is more pragmatic,
for engineering purposes, to use a simple fracture model (radial or elliptical crack, square Displacement
Discontinuity, single Displacement Discontinuity singularity...) to analyze the data, although all these
models may be incorrect. Within this scope, it is natural to investigate the problem of model selection
and model uncertainty. The Bayesian approach to inverse problems is well suited to quantitatively handle
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Figure 1. Set-up of tiltmeter in shallow boreholes (left, After Geomechanics Inc.), and typical layout
of a measurement array for fracture monitoring (right).

this class of problems. Model selection problems have received a considerable interest in the last decade
in the statistical and social science communities. Engineering applications are less frequent: one can cite,
among others, [12] in the case of electrical imaging, [2] in structural mechanics.

In this paper, we use a Bayesian approach to rank several different possible fracture models for the
typical non-linear inverse problem of hydraulic fracture imaging. The details of the method are discussed.
A synthetic example shows the benefits of such an approach, especially in relation to the far-field /near-
field fracture resolution problem. Real tiltmeter data from a full scale hydraulic fracturing treatment are
also inverted and different possible fracture geometries are tested.

2. PROBLEM DESCRIPTION

2.1 Tiltmeter fracture mapping

Modern high precision tiltmeters can detect changes of inclination down to nanoradians, which makes
possible the monitoring of deep pressurized fractures. Several types of tilt sensor exist, but the most
common are electrolyte level sensors, which convert changes of tilt angle to changes of resistance. The
sensor measures the angle between its axis and the gravity vector. Most instruments are equipped with
2 such sensors, one for each axis of tilt. The tiltmeter in itself is a rigid body and also contains signal
processing electronics. Usually for geotechnical applications, tiltmeters are located in shallow boreholes
(several meters deep) in order to reduce the ambient noise. A typical set up of an instrument is depicted
in Figure 1. In that case, the tiltmeter can be assumed to be fully clamped to the surrounding rock. A
similar coupling is obtained if the instrument is fixed to an existing well-bore using mechanical arms. The
angles recorded are related to the infinitesimal rotation at the instrument point. The two recorded tilts
(along the two orthogonal axis (e1,e2) of the instrument) are related to two components of the so-called

1
rotation tensor in small strain w = 3 (V'u, — VT'U,):

gy = L Qs Om gy = L QU8 Duz
a17w3172 8$1 83:3 OLQ*U}3272 8.’172 8:53

Typically, a dozen instruments or so are used in hydraulic fracturing applications. A schematic view of a
typical surface array can be seen in Figure 1. Downhole tiltmeter arrays located in the monitoring well
(or even the treatment well) are also used in the industry. Prior to any inversion procedure, the tilt data
have to be corrected for the effect of earth tides (particularly for surface tiltmeters) and any instrumental
drift. Figure 2 displays the two corrected tilts recorded by a tiltmeter during a real hydraulic fracturing
treatment. The change of tilt induced by the propagation of the hydraulic fracture can be clearly seen,
as well as the beginning of the return of the tilt toward zero after the end of the injection. This return
is delayed due to the diffusion of fracturing fluid in the rock mass.

The change of tilt between the beginning of the injection and a particular time ¢;, obtained at several
points in the medium, provides accurate data for an inverse problem for the fracture geometry. This
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Figure 2. Field experiment: typical evolution of tilt data during a Hydraulic fracturing treatment. The
corresponding best fit is also displayed.

inverse problem is sequentially solved at different times during the injection period in order to monitor
the growth of the hydraulic fracture.

2.2 The forward and inverse problems
The elastostatic deformation and tilts induced by a pressurized fracture S are solution of the following
elastostatic boundary value problem in the domain €2:

divC:e(w) = 0 inQ\S
Tu) - n = px) onlS (1)

where C is the tensor of elastic moduli, u the displacement field, and € the small strain operator e(u) =
1(Vu+ VTu). The traction vector is defined as T = o -n. In our case, we will consider only a half-space
or full-space domain such that the additional boundary conditions are:

e in the half-space case, a traction—free surface on the surface of the half-plane, and vanishing dis-
placement and stress at infinite depth,

e in the case of the infinite medium, vanishing displacement and stress at infinity.

We note that the internal fracture loading can also be represented as a displacement jump [D] of
the fracture faces. This forward problem can be recast in the framework of eigenstrain theory, so the
displacements, stresses and tilts can be obtained by a superposition of Displacements Discontinuity
Singularities (see [8]). For example, the displacement in the case of the opening mode fracture can be
expressed as

ui(xz) = /SUijk(z,z')njnan(z') dz’ (2)

In our notation, (Uij k -Djk) denotes the displacement u; at & induced by a DD singularity of the form Dy,
located at . (Djy - ny) represents a displacement jump across an element oriented by its unit normal
ng. We define D, = D;jn;n; as the normal component of the displacement jump. A similar integral
representation exists for the displacement gradient and therefore the tilts. We note that the fundamental
kernel U, is regular everywhere except on the fracture (z = 2’). In the case of fracture monitoring, the
instruments are located outside the fracture domains, simplifying the evaluation of the integral (2).

For a given time, the inverse problem consists in finding the fracture dimensions, the orientation (S, n)
and the opening profile D,,(z') from observations of the tilts w31, w3s at N/2 different tiltmeter stations
in the medium. These data forms an observation vector d of length N.

Before discussing the solution of this problem, it is important to recall a result recently obtained
regarding the resolution of fracture dimensions from such measurements [11]. It can be shown that
the details of the fracture shape get attenuated very quickly as the distance between the measurements
and the fracture increases. This is a typical consequence of St Venant’s principle in elasticity. It is
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possible to prove that a severe non-uniqueness for the fracture dimensions exists in the case of far-field
measurement. Observations located in the far-field deformation pattern of a pressurized fracture are only
sensitive to the volume and orientation of the fracture: in the far-field the fracture is equivalent to a
Displacement Discontinuity Singularity with an intensity equal to the fracture volume. In the case of
near-field measurements, the shape as well as the internal pressure of the fracture start to have a visible
effect on the deformation field. The far-field /near-field transition has been estimated using a far-field
expansion in terms of the fracture length of a finite fracture solution in a full-space [11]. The far-field
non-uniqueness on fracture dimensions becomes strong when the measurements are located at a distance
greater than twice the fracture characteristic length ¢. This result is extremely important in practice, as
the measurements are often far from the fracture with respect to its length. In practice, we distinguish
between two case: near-field and far-field tiltmeter fracture mapping, dependent on the location of the
measurement and the expected size of the fracture.

For far-field fracture mapping, a simple DD Singularity model (i.e U;;x(z,2')n;ni) with an intensity
equal to the fracture volume can be used to robustly invert the data and obtain the fracture volume
and orientation. For near-field tiltmeter mapping, the dimensions of the fracture may be resolved but
the choice of the proper geometrical model becomes crucial. As mentioned in the introduction, the
unknown orientation of the fracture plane and the small number of measurements prohibits the use of
a discretization (using boundary elements for example) of a large finite surface in order to obtain a
finite linear inverse problem for the opening at each node. Moreover, it is difficult to know a priori the
characteristic length ¢ of the created fracture, so we never really know if we are in a case of near-field
or far-field fracture mapping. In the far-field case, the severe non-uniqueness prevents us from using
a complex discretization to invert the integral eqn.(2). It is more practical for engineering purpose to
use simple fracture geometries in order to analyse the data. Using such simple parametrizations of the
fracture, with analytical expressions for the tilts, enables much faster solution of the inverse problem.
This ultimately allows real-time estimation — during the fracture treatment — of some fracture parameters.
We can, if needed, increase the complexity of the model incrementally.

Along these lines, in the near-field case, the choice of the best model from a finite set of fracture
geometries becomes a crucial problem. We use a Bayesian model selection approach to treat the problem
quantitatively. For a model My, the data d recorded at time t¢; can be formally represented as:

d = gr(my) + e (3)

where g is the model function simulating the tilt. In the case of fracture detection, g; is a non linear
function of the parameters m; of the model Mj. The model parameter vector my, is finite and contains
the fracture orientation (with normal n defined by Euler angles), size parameters etc. The noise vector €
incorporates the experimental and modelling noise for the model M. This noise depends on the chosen
model (i.e: modelling error) and is an unknown to be estimated. For simplicity, we assume that €y is
Gaussian of zero-mean and variance o7: €, = N'(0,02I). The underlying assumptions of this choice is
that the error is the same for all data points and that there is no spatial correlation in the error.

Given the data set d at time t;, we want to estimate, among a set of pre-supposed models My,
k =1,2,... the most probable model as well as the corresponding model parameters m; and model noise
variance a,%. To achieve this, we solve an inverse problem for each model and then use a Bayesian criterion
to rank the different models. This is repeated sequentially in time in order to cover the full hydraulic
fracturing treatment.

In the ensuing illustrative examples, we use the following three models with unknown parameters m,
which have analytical expressions for the tilts:

e a penny—shaped fracture of radius R under constant pressure p in an infinite elastic medium [7]
m = (¢7 97 Rv p) (mOdel M1)7

e a square Displacement Discontinuity of half-length a and opening ¢ in an infinite medium [15]:

m = ((;57 97 ¢7 a, 5) (mOdel MQ)’

e a Displacement Discontinuity Singularity with an intensity equal to the volume of the fracture V:

m = (¢, 6, V), (model M3).

All fracture models can have any orientation in space, and this orientation is defined by Euler angles.
We assume that the center of the model coincides with the known location of the injection point.
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3. BAYESIAN MODEL SELECTION
The posterior probability of model My, after the data have been observed, can be written using Bayes’

rule as

p(dMp)p(My) (@)
p(d)
The denominator p(d) in eqn.(4) denotes the probability that the data have been observed, and is a
constant which is taken to normalize the expression as p(d) = >, p(d|My)p(My). p(My) is the prior

probability of model My, and p(d|M}) is the marginal probability of the data for model My. This last
quantity involves an integral over the entire parameter space for the given model My:

p(Mild) =

p(dIMy) = / / p(dmy, o)p(my, ox) dmy, do, (5)

In expression (5), the conditional probability p(d|my, o) is the probability that the data d were gener-
ated by model M}, with parameters my, oy, and is usually called the Likelihood function for parameter
estimation problem. The probability p(my,oy) is the prior probability on the model parameters and
model variance for model My. We shall refer to m(my, ox|d) = p(dlmy, ox)p(mg, o) as the Bayesian
posterior distribution for model My.

To compare two models, we compute the ratio of their posterior probability as in eqn.(4):

p(Mild) {p(qu {pmi] ,
P 2

P(Mz\d) P(d\Mz)
B

The first factor Bis is the so—called Bayes factor: it is the ratio of the marginal probability of the data
for the models M; and Ms. The second factor is the ratio of the model prior probability, and in many
cases will be set to unity, so model 1 and 2 are equiprobable prior choices. The main quantity of interest
is thus the Bayes factor Ba. As noted in [14, 9], when the Bayes factor Bjs is greater than 10, the data
clearly favours the the model M; over the model My. When 1 < Bys < 5, both models can be though
to consistently reproduce the data. Finally for Bis < 1, the data favor the model My over the model
M with the same restrictions if one looks at Boj.

In our case the set of models is discrete, so the general solution of the model selection problem can
be split into two parts. First, for each model My, from the posterior pdf 7(my, ox|d), we estimate the
marginal probability p(d|M},) of the data using eqn.(5). Second, the full set of Bayes factors are computed
in order to rank the different models. The main difficulty is to compute the marginal probability of the
data for model My, which involves an integration over the entire parameter space eqn.(5).

3.1 Definition and solution for a given model
In this section, we define all the required probability density functions for a given model My, but drop
the reference to k for clarity. The likelihood is taken as a normal probability function for the error in

eqn.(3):
pdim, ) = s e |~ 533 (d - gm))(d — g(m) | )

Assuming that the prior on the model parameters p(m, o) is independent of the prior on the noise variance,
we have

p(m, o) = p(m)p(o) (8)

and we choose normal forms for the prior on the model parameters:

) = i O |y )y my ). )

Here m,, is a vector of prior means for the d parameters of model M, and C, is the corresponding
prior covariance matrix. This matrix is diagonal in our case as all model parameters are supposed
independent. (In the Hydraulic fracturing case, the fracture orientation is related to the initial stress,
whereas the length is related to the injected volume). As the variance should be a positive scale number,
we choose an uninformative Jeffrey’s prior:

p(0) = 1/o. (10)
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The goal is now to characterize the posterior pdf n(m,o|d) = p(d|m,c)p(m)p(c) and compute the
marginal probability of the data for the given model (eqn.5). In most cases this requires a high dimensional
integration and is therefore often untractable numerically. However, several methods can be used in order
to obtain an approximation to the integral, e.g. the Laplace approximation, and with further assumptions,
the BIC approximation. We refer to [9, 14] for a complete discussion, and derivation, of the different
methods related to the estimation of the marginal probability of the data.

The first step is to approximate the posterior pdf by a normal multivariate distribution around its
mode. Introducing the vector z = (m, o) of dimension d + 1, and denoting the pdf mode as Z, we write:

m(m,old) = 7(z|d) ~ m(2|d) exp (;(z —5TC (2 - z)) (11)

where C is the posterior covariance matrix at the mode 2. The integral (5) can then be estimated using
the so-called Laplace approximation for integrals (see [13] for details):

p(dlM) = w(Z|d)(2m) V20|12 (12)

A further approximation of eqn.(12) leads to the so-called BIC approximation (Bayesian Information Cri-
terion). This approximation is valid for large samples and gives (again see [13] for a complete discussion):

1
log p(d| M) ~ log 7(3|d) — d%logzwou) (13)

The error associated with such approximation is of order 1, but is commonly believed to be of the same
order for different models so that it is still possible to use it in order to compare several models. This
approximation appears somewhat crude, but has the advantage of not requiring an explicit estimate of the
posterior covariance matrix. Finally, an alternative way to characterizes the posterior model parameter
pdf is by using a Markov Chain Monte Carlo (MCMC) algorithm. We refer to [14] and, in general [6] for
a discussion of this approach.

In practice, the mode of the posterior pdf is found by minimizing the functional 7 (z) = — log 7(m, o|d)
with respect to the variables z = (m, ). In our case, in order to ensure that the variance ¢ remains
positive during the optimization, we perform a re parametrization by taking o = logo as unknown. We
therefore have the prior p(a) = 1 and the functional can be written as

J(z=(m,a))) = N;_d log(27) + %log |ICp| + Na
b L exp(~20)(d — g(m))(d - g(m)) + S(m, ~m)"C; m, ~m)  (14)

The minimum Z of J(z) corresponds to the mode of the posterior of the model parameter 7(2|d). The

Hessian matrix H of J(z) at the minimum is directly related to the covariance matrix C = H~'. This

covariance, or Hessian matrix, can be obtained using a Taylor expansion around z (see [16] for details).

Then, for the particular model chosen, we can obtain an approximation of p(d| M) via (12) (Bayes Factor)
r (13) (BIC).

For our particular problem and the model used, the functional 7 (z) has proved to be relatively smooth
and convex, and the normal approximation of the posterior generally appears very good in salient cross-
sections of the log—posterior. The minimization is performed via a quasi-Newton algorithm (BFGS with
a Wolfe line search), which is computationally very efficient but will only converge to a local minima.
In order to globalize the algorithm, the optimization is performed starting from several randomly chosen
initial guesses for the parameters z.

The significance and use of prior probability distributions has been a topic of much debate in Bayesian
estimation. An important issue is the appropriate specification of uninformative priors: we discuss here
a few important implications for the posterior in model selection problems (see [3] for details). As can be
seen from the normal form of the prior on model parameters, one can seemingly force an uninformative
prior on model parameters by setting the scale of the prior covariance matrix entries C), to a very large
positive number. Such a choice should be avoided. In the scope of model selection, large C;, have a
direct influence on the value of the mode of the posterior probability via the terms in |Cp|. Such non-
informative priors will always heavily favour the model with the least number of parameters, when the
Bayes factor are computed. This is the so-called Lindley’s Paradox. As a rule of thumb, in order to input
uninformative priors, it is practical to take variances on the prior model parameters value of not more
than one order of magnitude greater than the prior mean.
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Figure 3. Synthetic example: Estimated fracture volume V at different times 7 during the simulated
fracturing treatment.

4. EXAMPLES

We now apply this model selection approach to two example problems: a synthetic data set, and a field
example. We have to note that despite the fact that the hydraulic fracture evolves during a treatment,
the models used here are static, mot propagation models. Nevertheless, the inverse problem can be
sequentially repeated in time in order to furnish an estimation of the hydraulic fracture growth.

4.1 A synthetic example

We have simulated the tilt data corresponding to the propagation of a penny-shaped hydraulic fracture
in the so-called toughness dominated regime of propagation [4]. In this regime, the propagation of
the hydraulic fracture, located in a full space, is self-similar and the pressure inside the fracture is
homogeneous. The evolution of the fracture radius and pressure are given by power laws of time:

R(7) = Livko™™®  p(1) = B Mor /0 (15)

where i, and Ily, are constants [4]. The dimensionless time is defined as 7 = ti and the characteristic

time t. is related to the injection rate @,, plane strain Young’s Modulus E’, fracture toughness K’ and

WBQB RN 1/2 ~
fracturing fluid viscosity p': t. = ([(’108> . The characteristic length scale Lj and dimensionless
B E3 ’ K6 1/2
number € are given by L = % and €, = (W) respectively. In order to simulate the

data, we have used here L, = 50 and &, = 1073. The array of measurements consists of 13 tiltmeter

stations (26 tilt data) spatially located in a plan approximatively 75 meters above the center of the
fracture. The orientation of the fracture remains constant with a dip 6 of 5° and a strike of 80° with
respect to North. We simulate the tilt data at different dimensionless times 7; = 7;_1 + 0.05 from 0 to 1.
A Gaussian noise component of standard deviation ¢y, = 0.5u radians is added to the tilt data vectors
at each time.

The evolution of the fracture dimensions and locations of the tiltmeters have been taken such that
for small dimensionless time 7 (i.e: small fracture), the measurements are located in the far field of the
fracture (distance to the fracture greater than 4R). As time increases, the radius of the fracture R gets
larger and the measurements become "near field”. From the length scales resolution limit previously
discussed [11], we expect that at small time we will resolve the fracture volume but not the fracture
dimensions. At large time, we will be able to obtain the fracture dimensions. The far-field/near-field
limit has been computed and the transition from far-field to near-field occur at a dimensionless time
T~ 0.3.

An inversion is performed for all 7; using the three different models defined previously: penny-shaped
(M, 4 parameters: radius, pressure, orientation), square DD (Msy, 5 parameters: length, opening,
orientation), DD Singularity (Ms, 3 parameters: volume, orientation). We note that the inversion at
different times are completely independent: the models are static. We seek to estimate which model better
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Figure 4. Synthetic example: estimated Modelling error standard deviation vs time (left) and Bayes
factors for the different models. Model M3 is the most probable at small time, Model M1 at large time.

explains the data at a given time, and this procedure is repeated for all 7; in the interval [0, 1]. The same
prior probability on the fracture orientation is taken for all models: ¢prior = 80°, std deviation = 15°
and 9prior = 0°, std deviation = 15°. The prior on the length scales or volume are taken uninformative
with a variance about one order of magnitude greater than the prior mean value. This choice avoids a
too strongly uninformative prior and the associated Lindley paradox effects when the Bayes factor are
estimated.

Results First of all, we can see in Figure 3 the estimation of the fracture volume obtained for the three
models at different times during the simulated treatment. As expected, the “true” model M; always
perfectly estimates the fracture volume. However, at small time (7 < 0.3), the estimated values of the
fracture radius and net pressure do not coincide with the simulated ones defined by eqn.(15). In the case
of far-field measurement, the length scales of the Penny-shaped model are not estimated independently.
For time above 7 = 0.3 (e.g. near-field measurement), the fundamental DD Singularity (model M3) gives
a wrong estimate of the fracture volume. Thus for near-field measurements, the DD Singularity model
is clearly inadequate. In a sense, we recover the far-field / near-field limit on the resolution of fracture
dimensions [11]. A further verification of the resolution limit is given by the fact that the length scales
of the “true” model (M) are exactly recovered for time above 7 = 0.3.

Figure 4 shows the evolution of the Bayes factors B12, B13, B23 and the model noise standard deviation
as the fracture grows. Interestingly, at early time (7 < 0.3), the data favours the DD singularity model
over the penny-shaped and square DD model as log Bos and log By3 are around —3. The identified
noise standard deviation are similar for the three models at early time and close to the noise standard
deviation input on the simulated data (0npue = 0.5u radians). For 7 > 0.3, the penny-shaped and square
DD models start to better resolve the data: log Bas and log By are largely positive. The estimated model
noise variance for these two models (M; and M) are also lower than the DD Singularity at large time
(Figure 4). The predicted fracture volume from the two models remains very close to the simulated one
(Figure 3) whereas the DD singularity clearly mis—estimates the fracture volume.

It is interesting to note that the square DD model Ms furnishes an accurate estimation of fracture
volume even for large times, when the recorded tilts sample the near field of the fracture. The Bayes
factor Bis between model M; and My does not increase as fast as the other two, but still rises quickly
above 10%. The Penny shaped model better explains the data than the square DD model at large time.
This is to be expected, as it is the “true” model for this synthetic case. However, such conclusions could
not have been drawn from the estimation of fracture volume alone (Figure 3). Further, the estimated
noise standard deviation for the true model (M) is always of the same order of magnitude as the input
noise for all time (0jnpye = 0.5p radians). This indicates that this model is consistent with the data. In
comparison, the estimated noise standard deviation is appreciably larger than the input noise standard
deviation for the square DD model at large time.

4.2 Field example
We now turn to the analysis of measured tilt data obtained during a field hydraulic fracture experiment,
which comprised the injection of a 10 m® water over a 30 minute period. This full-scale hydraulic
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Figure 5. Field Data example: Estimated Fracture volume and injected fluid volume (left), estimated
model error standard deviation (right) for the DD Singularity model (M3).
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Figure 6. Field Data example: Bayes factor and BIC comparing the penny-shaped and DD Singularity
models. The data favors the DD Singularity model M3 at all time.

fracturing experiment was performed by CSIRO Petroleum at a mine located in New South Wales,
Australia. The data was logged by an array of 13 tiltmeters positioned about 75 metres above the
hydraulic initiation point. A full description of this experiment can be found in [10]. We are interested
here in the result of the Bayesian model selection. The data have been analyzed using two models:
penny-shaped (M) and DD Singularity (M3). No apriori information on the volume of the fracture, or
the fracture radius in the case of M, are taken into account. However, knowledge of the state of regional
stresses at the site has enabled us to introduce a relatively weak prior on the fracture orientation as follows
(prior value and associated prior standard deviation): Azimuth ¢prior = 80° std deviationo = 25° and
Dip oprior = 0°, std deviationo = 15°.

Both models furnish exactly the same estimate of fracture volume and orientation throughout the
treatment period. Some of the results for the DD Singularity model are displayed in Figure 5. The
estimated values of the Euler angles are approximately constant during the treatment: 6 = 15°, ¢ = 70°.
The estimated model error standard deviation increases during the treatment and asymptotes to around
0.3urad. This value is larger than the noise standard deviation of the signal measured by the tiltmeter
station (/ 0.1urad) which indicates that the models do not entirely reproduce the data (heterogeneity of
the rock mass etc.). The fit at a particular tiltmeter station can be seen in Figure 2. In the case of the
penny-shaped model, the estimated dimensions (radius, net pressure) are always highly correlated. This
indicates a problem of length—scale resolution. The evolution of the Bayes Factor between the 2 models
B3 as well as the value for the BIC approximation are displayed in Figure 6. Both clearly favor the
DD singularity model throughout the whole treatment: log B13 negative. We can conclude that, for this
experiment, the created fracture never grew long enough for the tiltmeters to detect a near-field effect.
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CONCLUSIONS

In this paper, we have applied Bayesian model selection ideas to the hydraulic fracture imaging problem
using tiltmeter measurements. This analysis incorporated an unknown error variance in the framework
of the normal probability model. The modeling error can be quantified by comparing the estimated noise
modeling error variance to the recorded measurement noise. We have demonstrated the use of Bayes
factor to rank a suite of possible models for both synthetic and field data. For this particular inverse
problem, the Bayes factors reveal the near-field/far-field resolution limit for the fracture dimensions.
This is of particular interest for field applications where the expected fracture length, and therefore the
resolution limit, is poorly known.
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